Papers
Topics
Authors
Recent
Search
2000 character limit reached

Separation of Memory and Processing in Dual Recurrent Neural Networks

Published 17 May 2020 in cs.NE, cs.FL, cs.LG, and stat.ML | (2005.13971v1)

Abstract: We explore a neural network architecture that stacks a recurrent layer and a feedforward layer that is also connected to the input, and compare it to standard Elman and LSTM architectures in terms of accuracy and interpretability. When noise is introduced into the activation function of the recurrent units, these neurons are forced into a binary activation regime that makes the networks behave much as finite automata. The resulting models are simpler, easier to interpret and get higher accuracy on different sample problems, including the recognition of regular languages, the computation of additions in different bases and the generation of arithmetic expressions.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.