Papers
Topics
Authors
Recent
Search
2000 character limit reached

CNN-based Approach for Cervical Cancer Classification in Whole-Slide Histopathology Images

Published 28 May 2020 in cs.CV and eess.IV | (2005.13924v1)

Abstract: Cervical cancer will cause 460 000 deaths per year by 2040, approximately 90% are Sub-Saharan African women. A constantly increasing incidence in Africa making cervical cancer a priority by the World Health Organization (WHO) in terms of screening, diagnosis, and treatment. Conventionally, cancer diagnosis relies primarily on histopathological assessment, a deeply error-prone procedure requiring intelligent computer-aided systems as low-cost patient safety mechanisms but lack of labeled data in digital pathology limits their applicability. In this study, few cervical tissue digital slides from TCGA data portal were pre-processed to overcome whole-slide images obstacles and included in our proposed VGG16-CNN classification approach. Our results achieved an accuracy of 98,26% and an F1-score of 97,9%, which confirm the potential of transfer learning on this weakly-supervised task.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.