Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM and Dynamic Behavioral Models (2005.12270v1)

Published 24 May 2020 in physics.soc-ph, cs.LG, and cs.NE

Abstract: To accurately predict the regional spread of Covid-19 infection, this study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models. Several factors and control strategies affect the virus spread, and the uncertainty arisen from confounding variables underlying the spread of the Covid-19 infection is substantial. The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia. The results show that the proposed model closely replicates test data. It not only provides accurate predictions but also estimates the daily behavior of the system under uncertainty. The hybrid model outperforms the LSTM model accounting for limited available data. The parameters of the hybrid models were optimized using a genetic algorithm for each country to improve the prediction power while considering regional properties. Since the proposed model can accurately predict Covid-19 spread under consideration of containment policies, is capable of being used for policy assessment, planning and decision-making.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Seid Miad Zandavi (10 papers)
  2. Taha Hossein Rashidi (2 papers)
  3. Fatemeh Vafaee (4 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.