Papers
Topics
Authors
Recent
2000 character limit reached

The Rise of Cosmological Complexity: Saturation of Growth and Chaos

Published 21 May 2020 in hep-th, gr-qc, and quant-ph | (2005.10854v1)

Abstract: We compute the circuit complexity of scalar curvature perturbations on FLRW cosmological backgrounds with fixed equation of state $w$ using the language of squeezed vacuum states. Backgrounds that are accelerating and expanding, or decelerating and contracting, exhibit features consistent with chaotic behavior, including linearly growing complexity. Remarkably, we uncover a bound on the growth of complexity for both expanding and contracting backgrounds $\lambda \leq \sqrt{2} \ |H|$, similar to other bounds proposed independently in the literature. The bound is saturated for expanding backgrounds with an equation of state more negative than $w = -5/3$, and for contracting backgrounds with an equation of state larger than $w = 1$. For expanding backgrounds that preserve the null energy condition, de Sitter space has the largest rate of growth of complexity (identified as the Lyapunov exponent), and we find a scrambling time that is similar to other estimates up to order one factors.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.