Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality Prediction of Open Educational Resources A Metadata-based Approach (2005.10542v3)

Published 21 May 2020 in cs.CY

Abstract: In the recent decade, online learning environments have accumulated millions of Open Educational Resources (OERs). However, for learners, finding relevant and high quality OERs is a complicated and time-consuming activity. Furthermore, metadata play a key role in offering high quality services such as recommendation and search. Metadata can also be used for automatic OER quality control as, in the light of the continuously increasing number of OERs, manual quality control is getting more and more difficult. In this work, we collected the metadata of 8,887 OERs to perform an exploratory data analysis to observe the effect of quality control on metadata quality. Subsequently, we propose an OER metadata scoring model, and build a metadata-based prediction model to anticipate the quality of OERs. Based on our data and model, we were able to detect high-quality OERs with the F1 score of 94.6%.

Citations (15)

Summary

We haven't generated a summary for this paper yet.