Papers
Topics
Authors
Recent
2000 character limit reached

End-to-End Far-Field Speech Recognition with Unified Dereverberation and Beamforming

Published 21 May 2020 in eess.AS and cs.SD | (2005.10479v2)

Abstract: Despite successful applications of end-to-end approaches in multi-channel speech recognition, the performance still degrades severely when the speech is corrupted by reverberation. In this paper, we integrate the dereverberation module into the end-to-end multi-channel speech recognition system and explore two different frontend architectures. First, a multi-source mask-based weighted prediction error (WPE) module is incorporated in the frontend for dereverberation. Second, another novel frontend architecture is proposed, which extends the weighted power minimization distortionless response (WPD) convolutional beamformer to perform simultaneous separation and dereverberation. We derive a new formulation from the original WPD, which can handle multi-source input, and replace eigenvalue decomposition with the matrix inverse operation to make the back-propagation algorithm more stable. The above two architectures are optimized in a fully end-to-end manner, only using the speech recognition criterion. Experiments on both spatialized wsj1-2mix corpus and REVERB show that our proposed model outperformed the conventional methods in reverberant scenarios.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.