Papers
Topics
Authors
Recent
2000 character limit reached

Solving Composite Fixed Point Problems with Block Updates

Published 20 May 2020 in math.OC and math.FA | (2005.10235v3)

Abstract: Various strategies are available to construct iteratively a common fixed point of nonexpansive operators by activating only a block of operators at each iteration. In the more challenging class of composite fixed point problems involving operators that do not share common fixed points, current methods require the activation of all the operators at each iteration, and the question of maintaining convergence while updating only blocks of operators is open. We propose a method that achieves this goal and analyze its asymptotic behavior. Weak, strong, and linear convergence results are established by exploiting a connection with the theory of concentrating arrays. Applications to several nonlinear and nonsmooth analysis problems are presented, ranging from monotone inclusions and inconsistent feasibility problems, to minimization problems arising in data science.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.