Papers
Topics
Authors
Recent
Search
2000 character limit reached

Train and Deploy an Image Classifier for Disaster Response

Published 12 May 2020 in cs.CV | (2005.05495v1)

Abstract: With Deep Learning Image Classification becoming more powerful each year, it is apparent that its introduction to disaster response will increase the efficiency that responders can work with. Using several Neural Network Models, including AlexNet, ResNet, MobileNet, DenseNets, and 4-Layer CNN, we have classified flood disaster images from a large image data set with up to 79% accuracy. Our models and tutorials for working with the data set have created a foundation for others to classify other types of disasters contained in the images.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.