Papers
Topics
Authors
Recent
2000 character limit reached

Fine-Grained Visual Classification with Efficient End-to-end Localization

Published 11 May 2020 in cs.CV | (2005.05123v1)

Abstract: The term fine-grained visual classification (FGVC) refers to classification tasks where the classes are very similar and the classification model needs to be able to find subtle differences to make the correct prediction. State-of-the-art approaches often include a localization step designed to help a classification network by localizing the relevant parts of the input images. However, this usually requires multiple iterations or passes through a full classification network or complex training schedules. In this work we present an efficient localization module that can be fused with a classification network in an end-to-end setup. On the one hand the module is trained by the gradient flowing back from the classification network. On the other hand, two self-supervised loss functions are introduced to increase the localization accuracy. We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft and are able to achieve competitive recognition performance.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.