Papers
Topics
Authors
Recent
2000 character limit reached

Learning Stable Models for Prediction and Control

Published 8 May 2020 in cs.RO and math.OC | (2005.04291v2)

Abstract: This paper demonstrates the benefits of imposing stability on data-driven Koopman operators. The data-driven identification of stable Koopman operators (DISKO) is implemented using an algorithm \cite{mamakoukas_stableLDS2020} that computes the nearest \textit{stable} matrix solution to a least-squares reconstruction error. As a first result, we derive a formula that describes the prediction error of Koopman representations for an arbitrary number of time steps, and which shows that stability constraints can improve the predictive accuracy over long horizons. As a second result, we determine formal conditions on basis functions of Koopman operators needed to satisfy the stability properties of an underlying nonlinear system. As a third result, we derive formal conditions for constructing Lyapunov functions for nonlinear systems out of stable data-driven Koopman operators, which we use to verify stabilizing control from data. Lastly, we demonstrate the benefits of DISKO in prediction and control with simulations using a pendulum and a quadrotor and experiments with a pusher-slider system. The paper is complemented with a video: \url{https://sites.google.com/view/learning-stable-koopman}.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.