Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Koopman Data-Driven Predictive Control with Robust Stability and Recursive Feasibility Guarantees (2405.01292v1)

Published 2 May 2024 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: In this paper, we consider the design of data-driven predictive controllers for nonlinear systems from input-output data via linear-in-control input Koopman lifted models. Instead of identifying and simulating a Koopman model to predict future outputs, we design a subspace predictive controller in the Koopman space. This allows us to learn the observables minimizing the multi-step output prediction error of the Koopman subspace predictor, preventing the propagation of prediction errors. To avoid losing feasibility of our predictive control scheme due to prediction errors, we compute a terminal cost and terminal set in the Koopman space and we obtain recursive feasibility guarantees through an interpolated initial state. As a third contribution, we introduce a novel regularization cost yielding input-to-state stability guarantees with respect to the prediction error for the resulting closed-loop system. The performance of the developed Koopman data-driven predictive control methodology is illustrated on a nonlinear benchmark example from the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.
  2. ——, “Koopman model predictive control of nonlinear dynamical systems,” The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications, pp. 235–255, 2020.
  3. L. C. Iacob, R. Tóth, and M. Schoukens, “Koopman form of nonlinear systems with inputs,” Automatica, vol. 162, p. 111525, 2024.
  4. Y. Lan and I. Mezić, “Linearization in the large of nonlinear systems and koopman operator spectrum,” Physica D: Nonlinear Phenomena, vol. 242, no. 1, pp. 42–53, 2013.
  5. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern koopman theory for dynamical systems,” arXiv preprint arXiv:2102.12086, 2021.
  6. S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control,” PloS one, vol. 11, no. 2, p. e0150171, 2016.
  7. X. Zhang, W. Pan, R. Scattolini, S. Yu, and X. Xu, “Robust tube-based model predictive control with koopman operators,” Automatica, vol. 137, p. 110114, 2022.
  8. Y. Lian and C. N. Jones, “Learning feature maps of the koopman operator: A subspace viewpoint,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 860–866.
  9. A. Borghi, “Koopman subspace identification in the presence of measurement noise,” 2021.
  10. P. Verheijen, V. Breschi, and M. Lazar, “Handbook of linear data-driven predictive control: Theory, implementation and design,” Annual Reviews in Control, vol. 56, p. 100914, 2023.
  11. J. Köhler, K. P. Wabersich, J. Berberich, and M. N. Zeilinger, “State space models vs. multi-step predictors in predictive control: Are state space models complicating safe data-driven designs?” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 491–498.
  12. M. Lazar, “Basis functions nonlinear data-enabled predictive control: Consistent and computationally efficient formulations,” arXiv preprint arXiv:2311.05360, 2023.
  13. L. C. Iacob, G. I. Beintema, M. Schoukens, and R. Tóth, “Deep identification of nonlinear systems in koopman form,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 2288–2293.
  14. J. Köhler and M. N. Zeilinger, “Recursively feasible stochastic predictive control using an interpolating initial state constraint,” IEEE Control Systems Letters, vol. 6, pp. 2743–2748, 2022.
  15. Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear systems,” Automatica, vol. 37, pp. 857–869, 2001.
  16. B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.
  17. D. Goswami and D. A. Paley, “Global bilinearization and controllability of control-affine nonlinear systems: A koopman spectral approach,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 6107–6112.
  18. J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing koopman theory to allow for inputs and control,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 909–930, 2018.
  19. D. Masti, F. Smarra, A. D’Innocenzo, and A. Bemporad, “Learning affine predictors for mpc of nonlinear systems via artificial neural networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 5233–5238, 2020.
  20. Y. Lian, R. Wang, and C. N. Jones, “Koopman based data-driven predictive control,” 2021.
  21. M. Lazar, W. P. M. H. Heemels, and A. R. Teel, “Further input-to-state stability subtleties for discrete-time systems,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1609–1613, 2013.
  22. C. M. Kellett, “A compendium of comparison function results,” Mathematics of Control, Signals, and Systems, vol. 26, no. 6, pp. 339–374, 2014.
  23. D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. ndez Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” European Journal of Control, vol. 15, no. 1, pp. 5–21, 2009.
  24. A. Dalla Libera and G. Pillonetto, “Deep prediction networks,” Neurocomputing, vol. 469, pp. 321–329, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com