Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoencoding Pixies: Amortised Variational Inference with Graph Convolutions for Functional Distributional Semantics (2005.02991v2)

Published 6 May 2020 in cs.CL

Abstract: Functional Distributional Semantics provides a linguistically interpretable framework for distributional semantics, by representing the meaning of a word as a function (a binary classifier), instead of a vector. However, the large number of latent variables means that inference is computationally expensive, and training a model is therefore slow to converge. In this paper, I introduce the Pixie Autoencoder, which augments the generative model of Functional Distributional Semantics with a graph-convolutional neural network to perform amortised variational inference. This allows the model to be trained more effectively, achieving better results on two tasks (semantic similarity in context and semantic composition), and outperforming BERT, a large pre-trained LLM.

Citations (8)

Summary

We haven't generated a summary for this paper yet.