Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Vector Space for Distributional Semantics for Entailment (1607.03780v1)

Published 13 Jul 2016 in cs.CL and cs.LG

Abstract: Distributional semantics creates vector-space representations that capture many forms of semantic similarity, but their relation to semantic entailment has been less clear. We propose a vector-space model which provides a formal foundation for a distributional semantics of entailment. Using a mean-field approximation, we develop approximate inference procedures and entailment operators over vectors of probabilities of features being known (versus unknown). We use this framework to reinterpret an existing distributional-semantic model (Word2Vec) as approximating an entailment-based model of the distributions of words in contexts, thereby predicting lexical entailment relations. In both unsupervised and semi-supervised experiments on hyponymy detection, we get substantial improvements over previous results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. James Henderson (52 papers)
  2. Diana Nicoleta Popa (4 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.