Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memoryless Techniques and Wireless Technologies for Indoor Localization with the Internet of Things (2005.01877v2)

Published 4 May 2020 in eess.SP and cs.NI

Abstract: In recent years, the Internet of Things (IoT) has grown to include the tracking of devices through the use of Indoor Positioning Systems (IPS) and Location Based Services (LBS). When designing an IPS, a popular approach involves using wireless networks to calculate the approximate location of the target from devices with predetermined positions. In many smart building applications, LBS are necessary for efficient workspaces to be developed. In this paper, we examine two memoryless positioning techniques, K-Nearest Neighbor (KNN), and Naive Bayes, and compare them with simple trilateration, in terms of accuracy, precision, and complexity. We present a comprehensive analysis between the techniques through the use of three popular IoT wireless technologies: Zigbee, Bluetooth Low Energy (BLE), and WiFi (2.4 GHz band), along with three experimental scenarios to verify results across multiple environments. According to experimental results, KNN is the most accurate localization technique as well as the most precise. The RSSI dataset of all the experiments is available online.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sebastian Sadowski (2 papers)
  2. Petros Spachos (22 papers)
  3. Konstantinos Plataniotis (16 papers)
Citations (84)

Summary

We haven't generated a summary for this paper yet.