Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Intelligent Indoor Positioning Algorithm Based on Wi-Fi and Bluetooth Low Energy (2312.15744v1)

Published 25 Dec 2023 in cs.NI and eess.SP

Abstract: Indoor positioning plays a pivotal role in a wide range of applications, from smart homes to industrial automation. In this paper, we propose a comprehensive approach for accurate positioning in indoor environments through the integration of existing Wi-Fi and Bluetooth Low Energy (BLE) devices. The proposed algorithm involves acquiring the received signal strength indicator (RSSI) data from these devices and capturing the complex interactions between RSSI and positions. To enhance the accuracy of the collected data, we first use a Kalman filter for denoising RSSI values, then categorize them into distinct classes using the K-nearest neighbor (KNN) algorithm. Incorporating the filtered RSSI data and the class information obtained from KNN, we then introduce a recurrent neural network (RNN) architecture to estimate the positions with a high precision. We further evaluate the accuracy of our proposed algorithm through testbed experiments using ESP32 system on chip with integrated Wi-Fi and BLE. The results show that we can accurately estimate the positions with an average error of 61.29 cm, which demonstrates a 56\% enhancement compared to the state-of-the-art existing works.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. I. Hwang and Y. J. Jang, “Process mining to discover shoppers’ pathways at a fashion retail store using a WiFi-based indoor positioning system,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 4, pp. 1786–1792, May 2017.
  2. L. Bibbò, R. Carotenuto, and F. Della Corte, “An overview of indoor localization system for human activity recognition (HAR) in healthcare,” Sensors, vol. 22, no. 21, p. 8119, Oct. 2022.
  3. C. K. M. Lee, C. M. Ip, T. Park, and S. Chung, “A Bluetooth location-based indoor positioning system for asset tracking in warehouse,” in Proc. of Int’l Conference on Industrial Engineering and Engineering Management (IEEM), Macao, China, Feb. 2019.
  4. H. Vietz, A. Löcklin, H. Ben Haj Ammar, and M. Weyrich, “Deep learning-based 5G indoor positioning in a manufacturing environment,” in Proc. of Int’l Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, Sep. 2022.
  5. B. Molina, E. Olivares, C. E. Palau, and M. Esteve, “A multimodal fingerprint-based indoor positioning system for airports,” IEEE Access, vol. 6, pp. 10 092–10 106, Jan. 2018.
  6. Y. Assayag, H. Oliveira, E. Souto, R. Barreto, and R. Pazzi, “Adaptive path loss model for BLE indoor positioning system,” IEEE Internet of Things Journal, vol. 10, no. 14, Mar. 2023.
  7. M. Fazio, A. Buzachis, A. Galletta, A. Celesti, and M. Villari, “A proximity-based indoor navigation system tackling the covid-19 social distancing measures,” in Proc. of Symposium on Computers and Communications (ISCC), Rennes, France, Jul. 2020.
  8. C. Yang and H.-r. Shao, “WiFi-based indoor positioning,” IEEE Communications Magazine, vol. 53, no. 6, pp. 150–157, Mar. 2015.
  9. V. Bellavista-Parent, J. Torres-Sospedra, and A. Perez-Navarro, “New trends in indoor positioning based on WiFi and machine learning: A systematic review,” in Proc. of Int’l Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, Nov. 2021.
  10. N. Singh, S. Choe, and R. Punmiya, “Machine learning based indoor localization using WiFi RSSI fingerprints: An overview,” IEEE Access, vol. 9, pp. 127 150–127 174, Sep. 2021.
  11. J. Xue, J. Liu, M. Sheng, Y. Shi, and J. Li, “A Wi-Fi fingerprint based high-adaptability indoor localization via machine learning,” China Communications, vol. 17, no. 7, pp. 247–259, Jul. 2020.
  12. H. K. Yu, S. H. Oh, and J. G. Kim, “AI based location tracking in WiFi indoor positioning application,” in Proc. of Int’l Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, Apr. 2020.
  13. R. P. Ghozali and G. P. Kusuma, “Indoor positioning system using regression-based fingerprint method,” Int’l Journal of Advanced Computer Science and Applications, vol. 10, no. 8, pp. 231–239, 2019.
  14. A. Razavi, M. Valkama, and E.-S. Lohan, “K-means fingerprint clustering for low-complexity floor estimation in indoor mobile localization,” in Proc. of IEEE Globecom Workshops, San Diego, CA, Feb. 2015.
  15. Y. Rezgui, L. Pei, X. Chen, F. Wen, and C. Han, “An efficient normalized rank based svm for room level indoor WiFi localization with diverse devices,” Mobile Information Systems, vol. 2017, pp. 1–19, Jul. 2017.
  16. T. Arsan and O. Kepez, “Early steps in automated behavior mapping via indoor sensors,” Sensors, vol. 17, no. 12, Dec. 2017.
  17. R. Belka, R. S. Deniziak, G. Lukawski, and P. Pieta, “BLE-based indoor tracking system with overlapping-resistant IoT solution for tourism applications,” Sensors, vol. 21, no. 2, p. 329, Jan. 2021.
  18. M. Apetroaie-Cristea, S. J. Johnston, M. Scott, and S. J. Cox, “Indoor localisation system based on low-cost commodity hardware,” in Proc. of Int’l Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, Sep. 2016.
  19. K. A. N. Xu Feng and Z. Luo, “A survey of deep learning approaches for wifi-based indoor positioning,” Journal of Information and Telecommunication, vol. 6, no. 2, pp. 163–216, Sep. 2022.
  20. M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp, and K. Reddy, “Recurrent neural networks for accurate RSSI indoor localization,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 639–10 651, Sep. 2019.
  21. Y. Assayag, H. Oliveira, E. Souto, R. Barreto, and R. Pazzi, “Indoor positioning system using dynamic model estimation,” Sensors, vol. 20, no. 24, Dec. 2020.
  22. R. Elbakly and M. Youssef, “A robust zero-calibration RF-based localization system for realistic environments,” in Proc. of Annual IEEE Int’l Conference on Sensing, Communication, and Networking (SECON), London, UK, Jun. 2016.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Karamat Beigi (1 paper)
  2. Hamed Shah-Mansouri (10 papers)

Summary

We haven't generated a summary for this paper yet.