Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning the Associations of MITRE ATT&CK Adversarial Techniques (2005.01654v2)

Published 16 Apr 2020 in cs.CR and cs.AI

Abstract: The MITRE ATT&CK Framework provides a rich and actionable repository of adversarial tactics, techniques, and procedures (TTP). However, this information would be highly useful for attack diagnosis (i.e., forensics) and mitigation (i.e., intrusion response) if we can reliably construct technique associations that will enable predicting unobserved attack techniques based on observed ones. In this paper, we present our statistical machine learning analysis on APT and Software attack data reported by MITRE ATT&CK to infer the technique clustering that represents the significant correlation that can be used for technique prediction. Due to the complex multidimensional relationships between techniques, many of the traditional clustering methods could not obtain usable associations. Our approach, using hierarchical clustering for inferring attack technique associations with 95% confidence, provides statistically significant and explainable technique correlations. Our analysis discovers 98 different technique associations (i.e., clusters) for both APT and Software attacks. Our evaluation results show that 78% of the techniques associated by our algorithm exhibit significant mutual information that indicates reasonably high predictability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rawan Al-Shaer (1 paper)
  2. Jonathan M. Spring (4 papers)
  3. Eliana Christou (3 papers)
Citations (76)

Summary

We haven't generated a summary for this paper yet.