Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deepfake Video Forensics based on Transfer Learning (2004.14178v1)

Published 29 Apr 2020 in cs.CV

Abstract: Deeplearning has been used to solve complex problems in various domains. As it advances, it also creates applications which become a major threat to our privacy, security and even to our Democracy. Such an application which is being developed recently is the "Deepfake". Deepfake models can create fake images and videos that humans cannot differentiate them from the genuine ones. Therefore, the counter application to automatically detect and analyze the digital visual media is necessary in today world. This paper details retraining the image classification models to apprehend the features from each deepfake video frames. After feeding different sets of deepfake clips of video fringes through a pretrained layer of bottleneck in the neural network is made for every video frame, already stated layer contains condense data for all images and exposes artificial manipulations in Deepfake videos. When checking Deepfake videos, this technique received more than 87 per cent accuracy. This technique has been tested on the Face Forensics dataset and obtained good accuracy in detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rahul U (2 papers)
  2. Ragul M (2 papers)
  3. Raja Vignesh K (2 papers)
  4. Tejeswinee K (2 papers)
Citations (6)