Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive Deep Learning Approach (2312.10740v1)

Published 17 Dec 2023 in cs.CV and cs.AI

Abstract: Deepfake technology is widely used, which has led to serious worries about the authenticity of digital media, making the need for trustworthy deepfake face recognition techniques more urgent than ever. This study employs a resource-effective and transparent cost-sensitive deep learning method to effectively detect deepfake faces in videos. To create a reliable deepfake detection system, four pre-trained Convolutional Neural Network (CNN) models: XceptionNet, InceptionResNetV2, EfficientNetV2S, and EfficientNetV2M were used. FaceForensics++ and CelebDf-V2 as benchmark datasets were used to assess the performance of our method. To efficiently process video data, key frame extraction was used as a feature extraction technique. Our main contribution is to show the models adaptability and effectiveness in correctly identifying deepfake faces in videos. Furthermore, a cost-sensitive neural network method was applied to solve the dataset imbalance issue that arises frequently in deepfake detection. The XceptionNet model on the CelebDf-V2 dataset gave the proposed methodology a 98% accuracy, which was the highest possible whereas, the InceptionResNetV2 model, achieves an accuracy of 94% on the FaceForensics++ dataset. Source Code: https://github.com/Faysal-MD/Unmasking-Deepfake-Faces-from-Videos-An-Explainable-Cost-Sensitive-Deep-Learning-Approach-IEEE2023

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Faysal Mahmud (2 papers)
  2. Yusha Abdullah (2 papers)
  3. Minhajul Islam (6 papers)
  4. Tahsin Aziz (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.