Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On Bayesian Search for the Feasible Space Under Computationally Expensive Constraints (2004.11055v2)

Published 23 Apr 2020 in cs.LG, cs.NE, and stat.ML

Abstract: We are often interested in identifying the feasible subset of a decision space under multiple constraints to permit effective design exploration. If determining feasibility required computationally expensive simulations, the cost of exploration would be prohibitive. Bayesian search is data-efficient for such problems: starting from a small dataset, the central concept is to use Bayesian models of constraints with an acquisition function to locate promising solutions that may improve predictions of feasibility when the dataset is augmented. At the end of this sequential active learning approach with a limited number of expensive evaluations, the models can accurately predict the feasibility of any solution obviating the need for full simulations. In this paper, we propose a novel acquisition function that combines the probability that a solution lies at the boundary between feasible and infeasible spaces (representing exploitation) and the entropy in predictions (representing exploration). Experiments confirmed the efficacy of the proposed function.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com