Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Expert Prior in Bayesian Optimisation via Space Warping (2003.12250v1)

Published 27 Mar 2020 in cs.LG and stat.ML

Abstract: Bayesian optimisation is a well-known sample-efficient method for the optimisation of expensive black-box functions. However when dealing with big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function. Since the function evaluations are expensive in terms of both money and time, it may be desirable to alleviate this problem. One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation. In its standard form, Bayesian optimisation assumes the likelihood of any point in the search space being the optimum is equal. Therefore any prior knowledge that can provide information about the optimum of the function would elevate the optimisation performance. In this paper, we represent the prior knowledge about the function optimum through a prior distribution. The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum. We incorporate this prior directly in function model (Gaussian process), by redefining the kernel matrix, which allows this method to work with any acquisition function, i.e. acquisition agnostic approach. We show the superiority of our method over standard Bayesian optimisation method through optimisation of several benchmark functions and hyperparameter tuning of two algorithms: Support Vector Machine (SVM) and Random forest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Anil Ramachandran (1 paper)
  2. Sunil Gupta (78 papers)
  3. Santu Rana (68 papers)
  4. Cheng Li (1094 papers)
  5. Svetha Venkatesh (160 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.