Papers
Topics
Authors
Recent
2000 character limit reached

Visual Question Answering Using Semantic Information from Image Descriptions

Published 23 Apr 2020 in cs.CL, cs.AI, and cs.CV | (2004.10966v2)

Abstract: In this work, we propose a deep neural architecture that uses an attention mechanism which utilizes region based image features, the natural language question asked, and semantic knowledge extracted from the regions of an image to produce open-ended answers for questions asked in a visual question answering (VQA) task. The combination of both region based features and region based textual information about the image bolsters a model to more accurately respond to questions and potentially do so with less required training data. We evaluate our proposed architecture on a VQA task against a strong baseline and show that our method achieves excellent results on this task.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.