Papers
Topics
Authors
Recent
2000 character limit reached

TCNN: Triple Convolutional Neural Network Models for Retrieval-based Question Answering System in E-commerce

Published 23 Apr 2020 in cs.LG and cs.CL | (2004.10919v1)

Abstract: Automatic question-answering (QA) systems have boomed during last few years, and commonly used techniques can be roughly categorized into Information Retrieval (IR)-based and generation-based. A key solution to the IR based models is to retrieve the most similar knowledge entries of a given query from a QA knowledge base, and then rerank those knowledge entries with semantic matching models. In this paper, we aim to improve an IR based e-commerce QA system-AliMe with proposed text matching models, including a basic Triple Convolutional Neural Network (TCNN) model and two Attention-based TCNN (ATCNN) models. Experimental results show their effect.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.