Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Machine Translation via Referential Transparency (2004.10361v2)

Published 22 Apr 2020 in cs.CL and cs.SE

Abstract: Machine translation software has seen rapid progress in recent years due to the advancement of deep neural networks. People routinely use machine translation software in their daily lives, such as ordering food in a foreign restaurant, receiving medical diagnosis and treatment from foreign doctors, and reading international political news online. However, due to the complexity and intractability of the underlying neural networks, modern machine translation software is still far from robust and can produce poor or incorrect translations; this can lead to misunderstanding, financial loss, threats to personal safety and health, and political conflicts. To address this problem, we introduce referentially transparent inputs (RTIs), a simple, widely applicable methodology for validating machine translation software. A referentially transparent input is a piece of text that should have similar translations when used in different contexts. Our practical implementation, Purity, detects when this property is broken by a translation. To evaluate RTI, we use Purity to test Google Translate and Bing Microsoft Translator with 200 unlabeled sentences, which detected 123 and 142 erroneous translations with high precision (79.3% and 78.3%). The translation errors are diverse, including examples of under-translation, over-translation, word/phrase mistranslation, incorrect modification, and unclear logic.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pinjia He (47 papers)
  2. Clara Meister (39 papers)
  3. Zhendong Su (37 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.