Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation (2004.08694v5)

Published 18 Apr 2020 in cs.CL and cs.AI

Abstract: Question Generation (QG) is fundamentally a simple syntactic transformation; however, many aspects of semantics influence what questions are good to form. We implement this observation by developing SynQG, a set of transparent syntactic rules leveraging universal dependencies, shallow semantic parsing, lexical resources, and custom rules which transform declarative sentences into question-answer pairs. We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content, which helps generate questions of a descriptive nature and produce inferential and semantically richer questions than existing systems. In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules. A set of crowd-sourced evaluations shows that our system can generate a larger number of highly grammatical and relevant questions than previous QG systems and that back-translation drastically improves grammaticality at a slight cost of generating irrelevant questions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kaustubh D. Dhole (22 papers)
  2. Christopher D. Manning (169 papers)
Citations (51)