Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Bernoulli factory MCMC for intractable posteriors (2004.07471v3)

Published 16 Apr 2020 in stat.CO and stat.ME

Abstract: Accept-reject based Markov chain Monte Carlo (MCMC) algorithms have traditionally utilised acceptance probabilities that can be explicitly written as a function of the ratio of the target density at the two contested points. This feature is rendered almost useless in Bayesian posteriors with unknown functional forms. We introduce a new family of MCMC acceptance probabilities that has the distinguishing feature of not being a function of the ratio of the target density at the two points. We present two stable Bernoulli factories that generate events within this class of acceptance probabilities. The efficiency of our methods rely on obtaining reasonable local upper or lower bounds on the target density and we present two classes of problems where such bounds are viable: Bayesian inference for diffusions and MCMC on constrained spaces. The resulting portkey Barker's algorithms are exact and computationally more efficient that the current state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.