Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Barker's algorithm for Bayesian inference with intractable likelihoods (1709.07710v1)

Published 22 Sep 2017 in stat.CO

Abstract: In this expository paper we abstract and describe a simple MCMC scheme for sampling from intractable target densities. The approach has been introduced in Gon\c{c}alves et al. (2017a) in the specific context of jump-diffusions, and is based on the Barker's algorithm paired with a simple Bernoulli factory type scheme, the so called 2-coin algorithm. In many settings it is an alternative to standard Metropolis-Hastings pseudo-marginal method for simulating from intractable target densities. Although Barker's is well-known to be slightly less efficient than Metropolis-Hastings, the key advantage of our approach is that it allows to implement the "marginal Barker's" instead of the extended state space pseudo-marginal Metropolis-Hastings, owing to the special form of the accept/reject probability. We shall illustrate our methodology in the context of Bayesian inference for discretely observed Wright-Fisher family of diffusions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.