Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Divide-and-Conquer Approach to the Summarization of Long Documents (2004.06190v3)

Published 13 Apr 2020 in cs.CL

Abstract: We present a novel divide-and-conquer method for the neural summarization of long documents. Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into an ensemble of smaller summarization problems. In particular, we break a long document and its summary into multiple source-target pairs, which are used for training a model that learns to summarize each part of the document separately. These partial summaries are then combined in order to produce a final complete summary. With this approach we can decompose the problem of long document summarization into smaller and simpler problems, reducing computational complexity and creating more training examples, which at the same time contain less noise in the target summaries compared to the standard approach. We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance. Our best models achieve results that are on par with the state-of-the-art in two two publicly available datasets of academic articles.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexios Gidiotis (5 papers)
  2. Grigorios Tsoumakas (50 papers)
Citations (17)