Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variational Autoencoders with Normalizing Flow Decoders (2004.05617v1)

Published 12 Apr 2020 in cs.LG and stat.ML

Abstract: Recently proposed normalizing flow models such as Glow have been shown to be able to generate high quality, high dimensional images with relatively fast sampling speed. Due to their inherently restrictive architecture, however, it is necessary that they are excessively deep in order to train effectively. In this paper we propose to combine Glow with an underlying variational autoencoder in order to counteract this issue. We demonstrate that our proposed model is competitive with Glow in terms of image quality and test likelihood while requiring far less time for training.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.