Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Label-Conditioned Next-Frame Video Generation with Neural Flows (1910.11106v1)

Published 16 Oct 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Recent state-of-the-art video generation systems employ Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) to produce novel videos. However, VAE models typically produce blurry outputs when faced with sub-optimal conditioning of the input, and GANs are known to be unstable for large output sizes. In addition, the output videos of these models are difficult to evaluate, partly because the GAN loss function is not an accurate measure of convergence. In this work, we propose using a state-of-the-art neural flow generator called Glow to generate videos conditioned on a textual label, one frame at a time. Neural flow models are more stable than standard GANs, as they only optimize a single cross entropy loss function, which is monotonic and avoids the circular convergence issues of the GAN minimax objective. In addition, we also show how to condition Glow on external context, while still preserving the invertible nature of each "flow" layer. Finally, we evaluate the proposed Glow model by calculating cross entropy on a held-out validation set of videos, in order to compare multiple versions of the proposed model via an ablation study. We show generated videos and discuss future improvements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)