Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMR Parsing via Graph-Sequence Iterative Inference (2004.05572v2)

Published 12 Apr 2020 in cs.CL and cs.LG

Abstract: We propose a new end-to-end model that treats AMR parsing as a series of dual decisions on the input sequence and the incrementally constructed graph. At each time step, our model performs multiple rounds of attention, reasoning, and composition that aim to answer two critical questions: (1) which part of the input \textit{sequence} to abstract; and (2) where in the output \textit{graph} to construct the new concept. We show that the answers to these two questions are mutually causalities. We design a model based on iterative inference that helps achieve better answers in both perspectives, leading to greatly improved parsing accuracy. Our experimental results significantly outperform all previously reported \textsc{Smatch} scores by large margins. Remarkably, without the help of any large-scale pre-trained LLM (e.g., BERT), our model already surpasses previous state-of-the-art using BERT. With the help of BERT, we can push the state-of-the-art results to 80.2\% on LDC2017T10 (AMR 2.0) and 75.4\% on LDC2014T12 (AMR 1.0).

Citations (116)

Summary

We haven't generated a summary for this paper yet.