Papers
Topics
Authors
Recent
2000 character limit reached

CNN Encoder to Reduce the Dimensionality of Data Image for Motion Planning

Published 10 Apr 2020 in cs.AI, cs.CV, and eess.IV | (2004.05077v1)

Abstract: Many real-world applications need path planning algorithms to solve tasks in different areas, such as social applications, autonomous cars, and tracking activities. And most importantly motion planning. Although the use of path planning is sufficient in most motion planning scenarios, they represent potential bottlenecks in large environments with dynamic changes. To tackle this problem, the number of possible routes could be reduced to make it easier for path planning algorithms to find the shortest path with less efforts. An traditional algorithm for path planning is the A*, it uses an heuristic to work faster than other solutions. In this work, we propose a CNN encoder capable of eliminating useless routes for motion planning problems, then we combine the proposed neural network output with A*. To measure the efficiency of our solution, we propose a database with different scenarios of motion planning problems. The evaluated metric is the number of the iterations to find the shortest path. The A* was compared with the CNN Encoder (proposal) with A*. In all evaluated scenarios, our solution reduced the number of iterations by more than 60\%.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.