Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A single image deep learning approach to restoration of corrupted remote sensing products (2004.04209v1)

Published 8 Apr 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Remote sensing images are used for a variety of analyses, from agricultural monitoring, to disaster relief, to resource planning, among others. The images can be corrupted due to a number of reasons, including instrument errors and natural obstacles such as clouds. We present here a novel approach for reconstruction of missing information in such cases using only the corrupted image as the input. The Deep Image Prior methodology eliminates the need for a pre-trained network or an image database. It is shown that the approach easily beats the performance of traditional single-image methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.