Papers
Topics
Authors
Recent
2000 character limit reached

On the unisolvence for the quasi-polynomial spaces of differential forms

Published 31 Mar 2020 in math.NA and cs.NA | (2003.14278v1)

Abstract: We consider quasi-polynomial spaces of differential forms defined as weighted (with a positive weight) spaces of differential forms with polynomial coefficients. We show that the unisolvent set of functionals for such spaces on a simplex in any spatial dimension is the same as the set of such functionals used for the polynomial spaces. The analysis in the quasi-polynomial spaces, however, is not standard and requires a novel approach. We are able to prove our results without the use of Stokes' Theorem, which is the standard tool in showing the unisolvence of functionals in polynomial spaces of differential forms. These new results provide tools for studying exponentially-fitted discretizations stable for general convection-diffusion problems in Hilbert differential complexes.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.