Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra (2004.07966v2)

Published 16 Apr 2020 in math.NA, cs.NA, and math.AP

Abstract: We study the Stokes problem over convex polyhedral domains on weighted Sobolev spaces. The weight is assumed to belong to the Muckenhoupt class $A_q$ for $q \in (1,\infty)$. We show that the Stokes problem is well-posed for all $q$. In addition, we show that the finite element Stokes projection is stable on weighted spaces. With the aid of these tools, we provide well-posedness and approximation results to some classes of non-Newtonian fluids.

Citations (9)

Summary

We haven't generated a summary for this paper yet.