Papers
Topics
Authors
Recent
2000 character limit reached

On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra

Published 16 Apr 2020 in math.NA, cs.NA, and math.AP | (2004.07966v2)

Abstract: We study the Stokes problem over convex polyhedral domains on weighted Sobolev spaces. The weight is assumed to belong to the Muckenhoupt class $A_q$ for $q \in (1,\infty)$. We show that the Stokes problem is well-posed for all $q$. In addition, we show that the finite element Stokes projection is stable on weighted spaces. With the aid of these tools, we provide well-posedness and approximation results to some classes of non-Newtonian fluids.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.