Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Cross-Lingual Syntactic Transfer in Multilingual Recurrent Neural Networks

Published 31 Mar 2020 in cs.CL and cs.LG | (2003.14056v3)

Abstract: It is now established that modern neural LLMs can be successfully trained on multiple languages simultaneously without changes to the underlying architecture. But what kind of knowledge is really shared among languages within these models? Does multilingual training mostly lead to an alignment of the lexical representation spaces or does it also enable the sharing of purely grammatical knowledge? In this paper we dissect different forms of cross-lingual transfer and look for its most determining factors, using a variety of models and probing tasks. We find that exposing our LMs to a related language does not always increase grammatical knowledge in the target language, and that optimal conditions for lexical-semantic transfer may not be optimal for syntactic transfer.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.