Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DC-DistADMM: ADMM Algorithm for Constrained Distributed Optimization over Directed Graphs (2003.13742v7)

Published 30 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: This article reports an algorithm for multi-agent distributed optimization problems with a common decision variable, local linear equality and inequality constraints and set constraints with convergence rate guarantees. \textcolor{black}{The algorithm accrues all the benefits of the Alternating Direction Method of Multipliers (ADMM) approach}. It also overcomes the limitations of existing methods on convex optimization problems with linear inequality, equality and set constraints by allowing directed communication topologies. Moreover, the algorithm can be synthesized distributively. The developed algorithm has: (i) a $O(1/k)$ rate of convergence, where $k$ is the iteration counter, when individual functions are convex but not-necessarily differentiable, and (ii) a geometric rate of convergence to any arbitrary small neighborhood of the optimal solution, when the objective functions are smooth and restricted strongly convex at the optimal solution. The efficacy of the algorithm is evaluated by a comparison with state-of-the-art constrained optimization algorithms in solving a constrained distributed $\ell_1$-regularized logistic regression problem, and unconstrained optimization algorithms in solving a $\ell_1$-regularized Huber loss minimization problem. Additionally, a comparison of the algorithm's performance with other algorithms in the literature that utilize multiple communication steps is provided.

Citations (14)

Summary

We haven't generated a summary for this paper yet.