Papers
Topics
Authors
Recent
Search
2000 character limit reached

Faster computation of isogenies of large prime degree

Published 23 Mar 2020 in cs.CR and math.NT | (2003.10118v1)

Abstract: Let $\mathcal{E}/\mathbb{F}_q$ be an elliptic curve, and $P$ a point in $\mathcal{E}(\mathbb{F}_q)$ of prime order $\ell$. V\'elu's formulae let us compute a quotient curve $\mathcal{E}' = \mathcal{E}/\langle{P}\rangle$ and rational maps defining a quotient isogeny $\phi: \mathcal{E} \to \mathcal{E}'$ in $\tilde{O}(\ell)$ $\mathbb{F}_q$-operations, where the $\tilde{O}$ is uniform in $q$.This article shows how to compute $\mathcal{E}'$, and $\phi(Q)$ for $Q$ in $\mathcal{E}(\mathbb{F}_q)$, using only $\tilde{O}(\sqrt{\ell})$ $\mathbb{F}_q$-operations, where the $\tilde{O}$ is again uniform in $q$.As an application, this article speeds up some computations used in the isogeny-based cryptosystems CSIDH and CSURF.

Citations (124)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.