Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Label Proportions Estimation Technique for Adversarial Domain Adaptation in Text Classification

Published 16 Mar 2020 in cs.CL and cs.LG | (2003.07444v3)

Abstract: Many text classification tasks are domain-dependent, and various domain adaptation approaches have been proposed to predict unlabeled data in a new domain. Domain-adversarial neural networks (DANN) and their variants have been used widely recently and have achieved promising results for this problem. However, most of these approaches assume that the label proportions of the source and target domains are similar, which rarely holds in most real-world scenarios. Sometimes the label shift can be large and the DANN fails to learn domain-invariant features. In this study, we focus on unsupervised domain adaptation of text classification with label shift and introduce a domain adversarial network with label proportions estimation (DAN-LPE) framework. The DAN-LPE simultaneously trains a domain adversarial net and processes label proportions estimation by the confusion of the source domain and the predictions of the target domain. Experiments show the DAN-LPE achieves a good estimate of the target label distributions and reduces the label shift to improve the classification performance.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.