Papers
Topics
Authors
Recent
2000 character limit reached

Mining Label Distribution Drift in Unsupervised Domain Adaptation

Published 16 Jun 2020 in cs.CV | (2006.09565v3)

Abstract: Unsupervised domain adaptation targets to transfer task-related knowledge from labeled source domain to unlabeled target domain. Although tremendous efforts have been made to minimize domain divergence, most existing methods only partially manage by aligning feature representations from diverse domains. Beyond the discrepancy in data distribution, the gap between source and target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has been under insufficient exploration. From this perspective, we first reveal how label distribution drift brings negative influence. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift is addressed by a source sample weighting strategy, which selects samples that contribute to positive adaptation and avoid adverse effects brought by the mismatched samples. Experiments show that LMDAN delivers superior performance under considerable label distribution drift.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.