Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Manifold lifting: scaling MCMC to the vanishing noise regime (2003.03950v2)

Published 9 Mar 2020 in stat.CO

Abstract: Standard Markov chain Monte Carlo methods struggle to explore distributions that are concentrated in the neighbourhood of low-dimensional structures. These pathologies naturally occur in a number of situations. For example, they are common to Bayesian inverse problem modelling and Bayesian neural networks, when observational data are highly informative, or when a subset of the statistical parameters of interest are non-identifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the vanishing noise limit. We employ a constrained Hamiltonian Monte Carlo method which exploits the manifold geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in several numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low dimensional structures.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.