Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sampling from manifold-restricted distributions using tangent bundle projections (1811.05494v3)

Published 13 Nov 2018 in stat.CO, astro-ph.IM, gr-qc, and stat.ME

Abstract: A common problem in Bayesian inference is the sampling of target probability distributions at sufficient resolution and accuracy to estimate the probability density, and to compute credible regions. Often by construction, many target distributions can be expressed as some higher-dimensional closed-form distribution with parametrically constrained variables, i.e., one that is restricted to a smooth submanifold of Euclidean space. I propose a derivative-based importance sampling framework for such distributions. A base set of $n$ samples from the target distribution is used to map out the tangent bundle of the manifold, and to seed $nm$ additional points that are projected onto the tangent bundle and weighted appropriately. The method essentially acts as an upsampling complement to any standard algorithm. It is designed for the efficient production of approximate high-resolution histograms from manifold-restricted Gaussian distributions, and can provide large computational savings when sampling directly from the target distribution is expensive.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)