Papers
Topics
Authors
Recent
2000 character limit reached

Pacemaker: Intermediate Teacher Knowledge Distillation For On-The-Fly Convolutional Neural Network (2003.03944v1)

Published 9 Mar 2020 in cs.CV

Abstract: There is a need for an on-the-fly computational process with very low performance system such as system-on-chip (SoC) and embedded device etc. This paper presents pacemaker knowledge distillation as intermediate ensemble teacher to use convolutional neural network in these systems. For on-the-fly system, we consider student model using 1xN shape on-the-fly filter and teacher model using normal NxN shape filter. We note three points about training student model, caused by applying on-the-fly filter. First, same depth but unavoidable thin model compression. Second, the large capacity gap and parameter size gap due to only the horizontal field must be selected not the vertical receptive. Third, the performance instability and degradation of direct distilling. To solve these problems, we propose intermediate teacher, named pacemaker, for an on-the-fly student. So, student can be trained from pacemaker and original teacher step by step. Experiments prove our proposed method make significant performance (accuracy) improvements: on CIFAR100, 5.39% increased in WRN-40-4 than conventional knowledge distillation which shows even low performance than baseline. And we solve train instability, occurred when conventional knowledge distillation was applied without proposed method, by reducing deviation range by applying proposed method pacemaker knowledge distillation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.