Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling Knowledge via Intermediate Classifiers (2103.00497v2)

Published 28 Feb 2021 in cs.LG, cs.AI, and cs.CV

Abstract: The crux of knowledge distillation is to effectively train a resource-limited student model with the guide of a pre-trained larger teacher model. However, when there is a large difference between the model complexities of teacher and student (i.e., capacity gap), knowledge distillation loses its strength in transferring knowledge from the teacher to the student, thus training a weaker student. To mitigate the impact of the capacity gap, we introduce knowledge distillation via intermediate heads. By extending the intermediate layers of the teacher (at various depths) with classifier heads, we cheaply acquire a cohort of heterogeneous pre-trained teachers. The intermediate classifier heads can all together be efficiently learned while freezing the backbone of the pre-trained teacher. The cohort of teachers (including the original teacher) co-teach the student simultaneously. Our experiments on various teacher-student pairs and datasets have demonstrated that the proposed approach outperforms the canonical knowledge distillation approach and its extensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aryan Asadian (1 paper)
  2. Amirali Salehi-Abari (15 papers)
Citations (1)