Asymptotic behavior of branching diffusion processes in periodic media
Abstract: We study the asymptotic behavior of branching diffusion processes in periodic media. For a super-critical branching process, we distinguish two types of behavior for the normalized number of particles in a bounded domain, depending on the distance of the domain from the region where the bulk of the particles is located. At distances that grow linearly in time, we observe intermittency (i.e., the $k$-th moment dominates the $k$-th power of the first moment for some $k$), while, at distances that grow sub-linearly in time, we show that all the moments converge. A key ingredient in our analysis is a sharp estimate of the transition kernel for the branching process, valid up to linear in time distances from the location of the initial particle.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.