Papers
Topics
Authors
Recent
2000 character limit reached

Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles under Agent Uncertainty

Published 25 Feb 2020 in cs.RO, cs.SY, eess.SY, and math.OC | (2002.10999v4)

Abstract: Agent behavior is arguably the greatest source of uncertainty in trajectory planning for autonomous vehicles. This problem has motivated significant amounts of work in the behavior prediction community on learning rich distributions of the future states and actions of agents. However, most current works on chance-constrained trajectory planning under agent or obstacle uncertainty either assume Gaussian uncertainty or linear constraints, which is limiting, or requires sampling, which can be computationally intractable to encode in an optimization problem. In this paper, we extend the state-of-the-art by presenting a methodology to upper-bound chance-constraints defined by polynomials and mixture models with potentially non-Gaussian components. Our method achieves its generality by using statistical moments of the distributions in concentration inequalities to upper-bound the probability of constraint violation. With this method, optimization-based trajectory planners can plan trajectories that are chance-constrained with respect to a wide range of distributions representing predictions of agent future positions. In experiments, we show that the resulting optimization problem can be solved with state-of-the-art nonlinear program solvers to plan trajectories fast enough for use online.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.