Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Precise 3D Manipulation from Multiple Uncalibrated Cameras (2002.09107v2)

Published 21 Feb 2020 in cs.RO, cs.CV, and cs.LG

Abstract: In this work, we present an effective multi-view approach to closed-loop end-to-end learning of precise manipulation tasks that are 3D in nature. Our method learns to accomplish these tasks using multiple statically placed but uncalibrated RGB camera views without building an explicit 3D representation such as a pointcloud or voxel grid. This multi-camera approach achieves superior task performance on difficult stacking and insertion tasks compared to single-view baselines. Single view robotic agents struggle from occlusion and challenges in estimating relative poses between points of interest. While full 3D scene representations (voxels or pointclouds) are obtainable from registered output of multiple depth sensors, several challenges complicate operating off such explicit 3D representations. These challenges include imperfect camera calibration, poor depth maps due to object properties such as reflective surfaces, and slower inference speeds over 3D representations compared to 2D images. Our use of static but uncalibrated cameras does not require camera-robot or camera-camera calibration making the proposed approach easy to setup and our use of \textit{sensor dropout} during training makes it resilient to the loss of camera-views after deployment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Iretiayo Akinola (22 papers)
  2. Jacob Varley (14 papers)
  3. Dmitry Kalashnikov (34 papers)
Citations (24)
Youtube Logo Streamline Icon: https://streamlinehq.com