Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Neural Lip-Sync Framework for Synthesizing Photorealistic Virtual News Anchors (2002.08700v2)

Published 20 Feb 2020 in cs.CV and eess.AS

Abstract: Lip sync has emerged as a promising technique for generating mouth movements from audio signals. However, synthesizing a high-resolution and photorealistic virtual news anchor is still challenging. Lack of natural appearance, visual consistency, and processing efficiency are the main problems with existing methods. This paper presents a novel lip-sync framework specially designed for producing high-fidelity virtual news anchors. A pair of Temporal Convolutional Networks are used to learn the cross-modal sequential mapping from audio signals to mouth movements, followed by a neural rendering network that translates the synthetic facial map into a high-resolution and photorealistic appearance. This fully trainable framework provides end-to-end processing that outperforms traditional graphics-based methods in many low-delay applications. Experiments also show the framework has advantages over modern neural-based methods in both visual appearance and efficiency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.