Papers
Topics
Authors
Recent
2000 character limit reached

A kinetic traffic network model and its macroscopic limit: merging lanes

Published 14 Feb 2020 in math.AP, cs.NA, and math.NA | (2002.05995v2)

Abstract: In this paper we propose coupling conditions for a kinetic two velocity model for vehicular traffic on networks. These conditions are based on the consideration of the free space on the respective roads. The macroscopic limit of the kinetic relaxation system is a classical scalar conservation law for traffic flow. Similar to the asymptotic limit of boundary value problems for kinetic models, we consider here the limit of the full network problem including the coupling conditions at the nodes. An asymptotic analysis of the interface layers at the nodes and a matching procedure using half-Riemann problems for the limit conservation law are used to derive coupling conditions for classical macroscopic traffic models on the network from the kinetic ones.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.