Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numerical relaxation limit and outgoing edges in a central scheme for networked conservation laws

Published 7 Oct 2022 in math.NA and cs.NA | (2210.03573v1)

Abstract: A recently introduced scheme for networked conservation laws is analyzed in various experiments. The scheme makes use of a novel relaxation approach that governs the coupling conditions of the network and does not require a solution of the Riemann problem at the nodes. We numerically compare the dynamics of the solution obtained by the scheme to solutions obtained using a classical coupling condition. In particular, we investigate the case of two outgoing edges in the Lighthill-Whitham-Richards model of traffic flow and in the Buckley-Leverett model of two phase flow. Moreover, we numerically study the asymptotic preserving property of the scheme by comparing it to its preliminary form before the relaxation limit in a 1-to-1 network.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.