Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multi-Agent Coordination through Connectivity-driven Communication (2002.05233v4)

Published 12 Feb 2020 in cs.LG, cs.AI, cs.MA, and stat.ML

Abstract: In artificial multi-agent systems, the ability to learn collaborative policies is predicated upon the agents' communication skills: they must be able to encode the information received from the environment and learn how to share it with other agents as required by the task at hand. We present a deep reinforcement learning approach, Connectivity Driven Communication (CDC), that facilitates the emergence of multi-agent collaborative behaviour only through experience. The agents are modelled as nodes of a weighted graph whose state-dependent edges encode pair-wise messages that can be exchanged. We introduce a graph-dependent attention mechanisms that controls how the agents' incoming messages are weighted. This mechanism takes into full account the current state of the system as represented by the graph, and builds upon a diffusion process that captures how the information flows on the graph. The graph topology is not assumed to be known a priori, but depends dynamically on the agents' observations, and is learnt concurrently with the attention mechanism and policy in an end-to-end fashion. Our empirical results show that CDC is able to learn effective collaborative policies and can over-perform competing learning algorithms on cooperative navigation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Emanuele Pesce (4 papers)
  2. Giovanni Montana (74 papers)
Citations (9)
Youtube Logo Streamline Icon: https://streamlinehq.com